On a result of Bernstein

A. R. Reddy
School of Mathematics, Hyderabad University, Hyderabad 500134, India and Department of Mathematics,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.

Communicated by Oved Shisha
Received September 23, 1985; revised March 11, 1987

According to Bernstein [1, p. 90] the smallest uniform error obtained in approximating $(1-x)^{-1}$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ by polynomials $\sum_{k=0}^{n} c_{k} x^{k}, n \geqslant 0, c_{k}$ integers, $c_{n}=1$, is 2^{-n}. A related result is the following

Theorem. Let $a>1, m, n$ integers $\geqslant 0$, and either m is odd or $m \leqslant n$. Then

$$
\min _{Q \in \Pi_{m}}\left\|\frac{1}{1-x^{m+1}}-\frac{\sum_{i=0}^{n} x^{i}}{Q(x)}\right\|_{L^{x}[-1 / / a, 1 / /]}=a^{m-n}\left(a^{m+1}-1\right)^{-1}
$$

where Π_{m} denotes the class of all polynomials Q of degree m whose coefficients are positive integers, with $Q(x)>0$ throughout $[-1 / a, 1 / a]$.

Proof. For $0 \leqslant x \leqslant a^{-1}$,

$$
0 \leqslant \frac{1}{1-x^{m+1}}-\frac{\sum_{i=0}^{n} x^{i}}{\sum_{i=0}^{m} x^{i}}=\frac{x^{n+1}}{1-x^{m+1}} \leqslant \frac{a^{m+-n}}{a^{m+1}-1}
$$

as $x^{n+1}\left(1-x^{m+1}\right)^{-1}$ is increasing in $[0,1)$. For $-a^{-1} \leqslant x<0, n$ odd,

$$
0<\frac{1}{1-x^{m+1}}-\frac{\sum_{i=0}^{n} x^{i}}{\sum_{i=0}^{m} x^{i}} \leqslant \frac{a^{m-n}}{a^{m+1}-1}
$$

as $x^{n+1}\left(1-x^{m+1}\right)^{-1}$ is decreasing in $(-1,0)$. Similarly for $-a^{-1} \leqslant x<0$, n even,

$$
0<\frac{\sum_{i=0}^{n} x^{i}}{\sum_{i=0}^{m} x^{i}}-\frac{1}{1-x^{m+1}} \leqslant \frac{a^{m-n}}{a^{m+1}-1} .
$$

Hence,

$$
\left\|\frac{1}{1-x^{m+1}}-\frac{\sum_{i=0}^{n} x^{i}}{\sum_{i=0}^{m} x^{i}}\right\|_{L^{\infty}[-1 / a, 1 / a]}=\frac{a^{m-n}}{a^{m+1}-1} .
$$

On the other hand, let $Q \in \Pi_{m}$. Then

$$
\left\|\frac{1}{1-x^{m+1}}-\frac{\sum_{i=0}^{n} x^{i}}{Q(x)}\right\|_{L^{x}[-1 / a, 1 / a]} \geqslant \frac{1}{1-(1 / a)^{m+1}}-\frac{\sum_{i=0}^{n}(1 / a)^{i}}{\sum_{i=0}^{m}(1 / a)^{i}}=\frac{a^{m-n}}{a^{m+1}-1} .
$$

Reference

1. A. F. Timan, "Theory of Approximation of Functions of a Real Variable," The MacMillan Co., New York, 1963.
